sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей Политикой Конфиденциальности
Согласен
Поиск:

Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
TS_pub
technospheramag
technospheramag
ТЕХНОСФЕРА_РИЦ
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта

Яндекс.Метрика
R&W
 
 
Вход:

Ваш e-mail:
Пароль:
 
Регистрация
Забыли пароль?
Книги по фотонике
Урик Винсент Дж.-мл., МакКинни Джейсон Д., Вилльямс Кейт Дж.
Другие серии книг:
Мир фотоники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "люминесценция"
Фотоника #5/2024
М. Е. Степанов, У. А. Хохрякова, Т. В. Егорова, К. А. Магарян, А. В. Наумов
Проливая свет на ДНК-оригами. Применения в фотонике
DOI: 10.22184/1993-7296.FRos.2024.18.5.398.405 Фотоника и ДНК-нанотехнологии удачно дополняют друг друга благодаря возможности использования ДНК-наноструктур для создания сложных нано-оптических систем. Яркие примеры такого сотрудничества можно найти при применении метода ДНК-оригами к задаче создания элементной базы фотоники: контролируемая манипуляция световыми полями диктует высокие требования к точности размещения элементов (наномасштаб), которым можно удовлетворить, адресно прикрепляя желаемые нанообъекты к свернутой требуемым образом молекуле ДНК. В данном обзоре, завершающим цикл работ по применению ДНК-оригами, мы рассмотрим несколько успешных примеров подобного рода сотрудничества.
Фотоника #7/2023
А. О. Савостьянов, И. Ю. Еремчев, А. В. Наумов
Люминесцентная нанотермометрия с одиночными органическими молекулами: влияние электрон-­фононного взаимодействия
DOI: 10.22184/1993-7296.FRos.2023.17.7.508.514 Люминесцентная термометрия – ​стремительно развивающийся научный метод, основанный на зависимости люминесцентных и спектральных характеристик наноразмерных излучателей от температуры. Точность данного метода существенным образом зависит от используемых теоретических моделей, описывающих температурное поведение спектров. В настоящей работе мы приводим краткий обзор наших недавних результатов, связанных с новыми подходами к описанию температурного уширения спектральных линий одиночных органических молекул в полимерной матрице как результата электрон-­фононного взаимодействия. Мы полагаем, что рассматриваемый подход может быть успешно применен для разнообразных перспективных излучателей, используемых в люминесцентной термометрии.
Аналитика #2/2020
О. А. Лаврентьева, В. В. Родченкова
Фундаментальная наука – источник новых технологий
DOI: 10.22184/2227-572X.2020.10.2.96.108 Почти 20 лет назад в Институте физической химии и электрохимии им. А. Н. Фрумкина РАН был создан Центр коллективного пользования физическими методами исследования. Cобран высокотехнологичный парк уникального оборудования для проведения разнообразных фундаментальных и прикладных исследований методами рентгеноспектрального анализа, ЯМР, хромато-масс-спектрометрии, рамановской и ИК спектроскопии, флуоресценции, термоанализа и др.
Фотоника #7/2018
А. А. Рядун, М. И. Рахманова, В. А. Трифонов
Оптические свойства кристаллов Li₂₋₂ₓMg₂₊ₓ (MoO₄)₃, активированных ионами Eu³⁺, Сu²⁺, Ti⁴⁺
В статье представлены результаты исследования кристаллов Li₂₋₂ₓZn₂₊ₓ (MoO₄)₃, легированных ионами европия, меди и титана. Регистрируются спектры фотолюминесценции и рассчитываются времена жизни фотолюминесценции. Показано, что легирование кристаллов Li₂₋₂ₓZn₂₊ₓ (MoO₄)₃ ионами европия, меди и титана приводит к увеличению интенсивности люминесценции с максимумом на длине волны около 520 нм. Для кристаллов Li₂₋₂ₓZn₂₊ₓ (MoO₄)₃: Eu регистрировался спектр фотолюминесценции, обусловленный переходами европия, и соответствующие времена жизни были рассчитаны как 0,57 и 3,4 мс. На основе анализа угловых зависимостей спектров ЭПР кристаллов Li₂₋₂ₓZn₂₊ₓ (MoO₄)₃: Cu было установлено, что ионы меди входят в структуру в состоянии Сu²⁺ и занимают положение магния с образованием кислородной вакансии, чтобы обеспечить компенсацию заряда. Рассчитаны параметры ЭПР-спектров ионов меди. DOI: 10.22184/1993-7296.2018.12.7.672.679
Разработка: студия Green Art