sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей Политикой Конфиденциальности
Согласен
Поиск:

Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
TS_pub
technospheramag
technospheramag
ТЕХНОСФЕРА_РИЦ
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта

Яндекс.Метрика
R&W
 
 
Вход:

Ваш e-mail:
Пароль:
 
Регистрация
Забыли пароль?
Книги по фотонике
Урик Винсент Дж.-мл., МакКинни Джейсон Д., Вилльямс Кейт Дж.
Другие серии книг:
Мир фотоники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "лазерная сварка"
Фотоника #2/2021
Д. Трасковецкая
Конференция IX Конгресса Технологической платформы РФ «ФОТОНИКА»: «Лазерные производственные технологии»
DOI: 10.22184/1993-7296.FRos.2021.15.2.122.129 Представлен краткий обзор научно-­технической конференции «Лазерные производственные технологии», которая прошла в рамках IX Конгресса Технологической платформы РФ «ФОТОНИКА». Конгресс сопровождал 15‑ю юбилейную Международную специализированную выставку лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики‑2021». Развитие лазерных производственных технологий осуществляется комплексно: в процессах актуализации нормативной базы, создания усовершенствованного оборудования, написания программного обеспечения и математических моделей физико-­химических процессов, освоения технологий и получения новых материалов.
Фотоника #1/2021
С. В. Курынцев, И. Н. Шиганов
Лазерная сварка разнородных металлов. Обзор. Часть 2
DOI: 10.22184/1993-7296.FRos.2021.15.1.30.44 Во второй части представлено продолжение обзора отечественных и зарубежных статей по теме лазерная сварка разнородных металлов, в частности титана с алюминием, алюминия с медью и других наиболее распространенных пар металлов. На основе анализа научных статей установлено, что при сварке титана и алюминия встык рационально смещать лазерный луч на алюминий (предел прочности 168–180 МПа), тогда как при сварке внахлест рационально воздействовать лазерным лучом со стороны титана. Смещение лазерного луча и режимы сварки существенно влияют на толщину ИМС, которую при сварке встык можно снизить до 2–6 мкм. При сварке алюминия и меди лазерный луч необходимо смещать на алюминий как при сварке внахлест, так и при сварке встык. Основным эксплуатационным свой­ством соединения алюминия и меди является электропроводность, которая напрямую зависит от толщины и состава ИМС. Также рассмотрены технологии сварки титана и магния, стали и меди и других пар металлов.
Фотоника #6/2020
С. В. Курынцев, И. Н. Шиганов
Лазерная сварка разнородных металлов
DOI: 10.22184/1993-7296.FRos.2020.14.6.492.506 Представлен количественный и качественный анализ мировых тенденций в области лазерной сварки разнородных металлов за 2016–2019 годы. Определено, что лазерная сварка получила наибольшее распространение для соединений стали с алюминием, титана с алюминием, алюминия с медью. Представлен анализ основных техник и способов сварки разнородных металлов, результаты исследования их влияния на металлургию процесса, микроструктуру и механические свой­ства соединений. Акцент сделан на описании техники и способов лазерной сварки алюминия со сталью.
Фотоника #6/2020
Д. О. Чухланцев, В. П. Умнов, В. В. Мальцев, Д. А. Шипихин
Универсальный высокоавтоматизированный лазерный технологический комплекс на базе многолучевого лазера
DOI: 10.22184/1993-7296.FRos.2020.14.6.482.490 Представлен лазерный комплекс с шестилучевым электроразрядным лазером. Лазерная система разработана в компании «ТермоЛазер» и предназначена для технологических процессов лазерной обработки. Комплекс обладает системой управления мощностью каждого луча и их взаимного расположения в зоне обработки. Это позволяет использовать лазерную систему в широком диапазоне применений с высоким качеством выполнения лазерных операций (для резки, сварки, модификации поверхности деталей, наплавки).
Фотоника #4/2019
А. Г. Маликов, А. М. Оришич
Получение высокопрочных лазерных сварных соединений алюминиевых сплавов авиационного назначения
В работе проведены экспериментальные исследования лазерной сварки алюминиевых сплавов авиационного назначения. Для повышения механических свой­ств, сварных швов, был применен комплексный подход, включающий лазерную сварку в оптимальном режиме и пост обработку (закалка, промежуточная пластическая деформация, искусственное старение) сваренных швов. Впервые проведено комплексное сравнительное исследование влияния термической обработки на широкий напор параметров сварных швов и основных сплавов марки А5М, АМг6, 1420, 1424 и 1441 и В‑1469. Для всех этапов термообработки определено влияние химического состава сплава, на прочность и микроструктуру сварного шва. В результате выполнения работы разработана комплексная технология создания неразъемных соединений современных высокопрочных, термически упрочняемых алюминиевых сплавов, которая включает лазерную сварки и последующую специальную термическую обработку образцов. Найдены оптимальные режимы лазерной сварки, обеспечивающие получение сварных швов без дефектов в виде открытой пористости, подрезов, трещин в сварном шве и околошовной зоне. Проведена оптимизация постобработки сварных соединений, полученных при оптимальных режимах лазерной сварки, на основе термообработки (закалка + искусственное старение). Показана возможность, изменяя режимы термообработки управлять механическими параметрами создаваемых неразъемных соединений: прочностью и пластичность образцов. Впервые для сварных соединений полученных с помощью лазерной сварки и оптимальной постобработки для алюминиево-­литиевых термической обрабатываемых сплавов достигнуты механические характеристики сравнимые со значением для сплава в состоянии поставки. DOI: 10.22184/1993-7296.FRos.2019.13.4.356.366
Фотоника #3/2017
В.П.Бирюков, А.А.Фишков, Д.Ю.Татаркин, Е.В.Хриптович
Влияние лазерного упрочнения круглым, профилированным и колеблющимся лучом на повышение ресурса работы деталей машин
Разработана технология лазерного упрочнения металлических деталей. Ширина зоны упрочнения 15–50 мм за один проход позволяет обрабатывать посадочные места шеек валов различных механизмов и машин под подшипники качения и скольжения. Кроме того, технология может быть использована для упрочнения гибочных и других штампов при глубине упрочненного слоя 2,5 мм. DOI: 10.22184/1993-7296.2017.63.3.28.34
Фотоника #6/2016
М.Кузнецов, Е.Земляков, К.Бабкин
Обзор лазерных технологических головок для реализации промышленных лазерных технологий обработки металлических материалов
Рассмотрены технологические головки ведущих мировых производителей, предназначенные для реализации технологий лазерной и лазерно-дуговой сварки, лазерной резки, термообработки и наплавки. DOI:10.22184/1993-7296.2016.60.6.14.33
Станкоинструмент #2/2016
А. ГРЕЗЕВ, В. ГРЕЗЕВ, А. СУХОВ, С. ШАНЧУРОВ, М. МАЛЫШ
Разработка лазерных технологий для нефтегазовой отрасли
Проведены исследования по разработке технологий лазерной сварки, наплавки и резки для нефтегазовой отрасли. Разработана технология комбинированной лазерной сварки несколькими лазерными лучами, что позволяет регулировать объем сварочной ванны. Предлагается вместо дуговой сварки стыков трубопровода в полевых условиях использовать разработанный автоматизированный мобильный комплекс для лазерной сварки.
Фотоника #4/2015
Т.Баутц, М.Когель-Холлакер
Глубина канала проплавления – всего лишь дистанция повышения качества лазерной сварки с использованием датчика глубины проплавления
Датчик для измерения глубины проплавления непосредственно в процессе сварки, разработанный компанией Precitec, позволяет повысить качество сварного шва. В статье обсуждается процесс лазерной сварки, особенности формирования канала проплавления, сварного шва, а также о глубине канала.
Фотоника #2/2015
Д. Ляхов
Оптико-электронные установки измерений и контроля компонентов тепловыделяющих сборок энергетических ядерных реакторов
Технология создания изделий с помощью сварки обязательно включает в себя операции контроля неразъемных соединений. Если в составе изделий имеются элементы с поверхностями сложной формы, то точность их исполнения определяют с помощью специальных измерительных средств – устройств контактного измерения. Статья посвящена контролю сварных соединений дистанционирующих и пластинчатых решеток тепловыделяющих сборок (ТВС), используемых в энергетических ядерных реакторах типа ВВЭР.
1
2
Разработка: студия Green Art