Issue #5/2019
A. N. Melnikov
High-aperture diffraction optical element shaping techniques based on the use of pendulum-type ruling engines
High-aperture diffraction optical element shaping techniques based on the use of pendulum-type ruling engines
This paper touches upon the features and limitations of shaping techniques and promising application ranges of high-aperture diffraction optical elements. A number of applications require manufacturing ruled high-aperture diffraction optical elements on spherical and aspherical surfaces with a large sag, which is unachievable in practice with the existing manufacturing equipment. Engineering solutions have been suggested that open up the possibility to broaden the range of high-aperture diffraction optical elements basing on the use of pendulum-type ruling engines with subsequent replication of diffraction structure in the polymer layer.
DOI: 10.22184/1993-7296.FRos.2019.13.5.468.475
DOI: 10.22184/1993-7296.FRos.2019.13.5.468.475
Теги: high-aperture compact spectrograph high-aperture diffraction optical elements high-aperture ruled gratings master matrix pendulum-type ruling engine photopolymers ranges of application replication shaping techniques делительная машина маятникового типа мастер-матрица области применения реплицирование светосильные дифракционные оптические элементы светосильные нарезные дифракционные решетки светосильный компактный спектрограф технологии формообразования фотополимеры
High-aperture diffraction optical element shaping techniques based on the use of pendulum-type ruling engines
A. N. Melnikov, gipo@telebit.ru JSC «NPO «State Institute of Applied Optics», Kazan, Russia
This paper touches upon the features and limitations of shaping techniques and promising application ranges of high-aperture diffraction optical elements. A number of applications require manufacturing ruled high-aperture diffraction optical elements on spherical and aspherical surfaces with a large sag, which is unachievable in practice with the existing manufacturing equipment. Engineering solutions have been suggested that open up the possibility to broaden the range of high-aperture diffraction optical elements basing on the use of pendulum-type ruling engines with subsequent replication of diffraction structure in the polymer layer.
Key words: high-aperture diffraction optical elements, high-aperture ruled gratings, shaping techniques, ranges of application, high-aperture compact spectrograph, pendulum-type ruling engine, master matrix, replication, photopolymers.
Received: 28.05.2019. Accepted: 16.07.2019.
When creating compact and high-aperture analytical spectral instruments for solving a number of problems of a fundamental, search and applied nature (basic research, monitoring of plasma radiation, remote sensing of the Earth from space, environmental monitoring, monitoring the chemical composition of substances, etc.), it is necessary to use reflective and transmitting high-aperture diffraction optical elements (DOE) with high diffraction efficiency on convex and concave spherical and aspherical surfaces with large sag (large steepness) of the working surface [1–4]. Such DOEs have both dispersing properties and optical power, which minimizes the mass and size characteristics of spectral instruments, as well as improves their energy and aberration characteristics.
Currently, the DOEs of this type are manufactured using the following technologies [5–20]:
As a reference, Table 1 shows the parameters of non-planar ruled and holographic diffraction gratings of the standard series, which are currently offered in the catalogues of some companies; Table 1 shows that the greatest value of the sag of the working surface for ruled diffraction gratings is 4.02 mm, for holograms – 8.02 mm. At the same time, as it is known, classic ruling techniques ensure the achievement of the highest values of diffraction efficiency, but they are inferior to holographic techniques in terms of aperture ratio.
Photolithographic technologies based on the use of direct laser recording equipment ensure the formation of the DOE structure on non-planar surfaces with sags of no more than 5.2 mm [9, 20]. The existing technological limitations are determined by the nature of the dependence of the size of the scattering spot of the recording laser system on the change in the angle between the normal to the working surface of the DOE and the optical axis of the forming lens, the sensitivity and contrast of the photographic material used, which results in uneven diffraction efficiency within the DOE free aperture.
3D polymerization in photopolymer materials makes it possible to obtain three-dimensional diffraction structures with a limited free aperture – only a few millimetres [10, 15].
Thus, currently the most promising direction, providing the possibility of creating high-aperture DOEs with high diffraction efficiency, is the implementation of ruling techniques with the need to develop a fundamentally new technological equipment.
In [21], an example of calculation and optimization of the optical scheme of a compact high-aperture spectrograph based on the use of a concave reflective non-classical ruled diffraction grating was considered. The optimized parameters of the optical scheme of the spectrograph are as follows:
The width of the apparatus function of the optimized circuit at half maximum is 100; 100 and 105.6 μm for 400, 600 and 800 nm, respectively. Given the inverse linear dispersion, the spectral resolution limit is 1.43; 1.43 and 1.51 nm for the same control wavelengths. For comparison, the width of the hardware function of the original circuit is 102.4; 137.6 and 172.8 microns. The spectral limit in this case is 1.49; 2.00 and 2.51 nm. Thus, the correction of residual aberrations introduced through the use of a variable increment of grooves allows for increasing the spectral resolution up to 1.66 times.
With a free aperture of 58.6 mm, the maximum calculated sag of its concave working surface is 4.54 mm. As shown above, the ruling (based on the use of classical ruling engines) and holographic techniques cannot solve the problem of obtaining such a diffraction structure on such a steep surface with a large sag while maintaining a high energy concentration in the working diffraction order and a moderate level of scattered light. This is explained by the fact that there are fundamental limitations in the design and kinematics of classical ruling engines constructed according to the Rowland scheme in the ruling techniques, and there are restrictions on diffraction efficiency in holographic techniques.
For technological problems of manufacturing diffraction gratings, it is proposed to use a new technical solution, pendulum-type ruling engine, with similar and larger (up to 50 mm) sags of working surfaces, which opens up the possibility of shaping high-aperture ruled diffraction gratings on convex spherical and aspherical surfaces [22]. A general view of the proposed pendulum ruling engine is shown in the figure.
In this case, a concave high-aperture non-classical diffraction grating with the parameters calculated above can be made by precision copying based on the use of thermo- or photopolymer compositions [23] with a convex ruled grating matrix made on a pendulum-type ruling engine. This approach provides a relatively high image quality and high diffraction efficiency in a compact and simple spectrograph scheme, as well as low cost and high performance, which is especially important in the serial production of a single optical element (replica concave diffraction gratings) in the optical scheme and the device as a whole.
It should be noted that the task of shaping ruled DOEs with a large sag on convex cylindrical surfaces is optimally solved using a pendulum-type ruling engine, the principles of which are also protected by the RF patent [24].
An important step in the technique of shaping high-aperture DOEs is the certification of their parameters, which includes control of their optical quality and diffraction efficiency in working orders and in a given spectral range. Optical quality control should be carried out by interferometric methods and means as the most informative ones. According to the results of decoding the corresponding interferograms, quantitative information is obtained about the main parameters of the DOE samples under study: the point scattering function, the line scattering function, the Strehl coefficient, and the mean-square deviation. To determine the diffraction efficiency (absolute and relative), known photometric methods and measuring instruments are used [25, 26].
We indicate promising areas of use of high-aperture DOEs:
In conclusion, the following should be noted:
Referance
Liu Ch., Straif Ch., Flügel-Paul Th., Zeitner U. D., Gross H. Optical design and tolerancing of a hyperspectral imaging spectrometer. Proc. SPIE. 2016. V. 9947. P. 994703-1-994703-9.
Kendrick S. E., Woodruff R. A., Hull T., Heap S. R., Kutyrev A., Danchi W., Purves L. Multiplexing in Astrophysics with a UV multi-object spectrometer on CETUS, a Probe-class mission study. Proc. SPIE. 2017; 10401: 1040111-1-1040111-9.
Mel'nikov A. N., Muslimov E. R. Analiz variantov opticheskoj skhemy svetosil'nogo izobrazhayushchego spektrografa, postroennogo na osnove vypukloj gologrammnoj difrakcionnoj reshetki. Opticheskij zhurnal. 2019; 86(3): 32-39.
Pavlycheva N. K. Spektral'nye pribory s neklassicheskimi difrakcionnymi reshetkami. Kazan': Izd-vo KGTU. 2003.
URL: http://www.hitachi-hightech.com.
URL: http://shvabe. com/about/company/gosudarstvennyy-institut-prikladnoy-optiki/produktsiya-gipo/opticheskie-materialy.
URL: http://www.horiba.com/scientific/products/diffraction-gratings/.
URL: http://holograte.com/produktyi/golograficheskie-difrakczionnyie-resheniya/difrakczionnyie-reshetki-dlya-spektralnyix-priborov.
Verhoglyad A. G., Zav'yalova M. A., Kastorskij L. B., Kachkin A. E., Kokarev S. A., Korol'kov V. P., Moiseev O. Yu., Poleshchuk A. G., Shimanskij R. V. Krugovaya lazernaya zapisyvayushchaya sistema dlya izgotovleniya DOE na sfericheskih poverhnostyah. Interekspo GEO-Sibir'-2015. HI Mezhdunar. nauch. kongr.: Mezhdunar. nauch. konf. 'SibOptika‑2015': sb. materialov v 3 t. Novosibirsk: SGUGiT, 2015; 2: 62-68.
URL: http://www.altechna.com.
Xu D., Owen J. D., Papa J. C., Reimers J., Suleski T. J., Troutman J. R., Davies M. A., Thompson K. P., Rolland J. P. Design, fabrication, and testing of convex reflective diffraction gratings. Optics Express. 2017; 25(13): 15252-15267.
Sukegawa T., Okura Yu., Nakayasu T. Commercial availability of astronomical machined gratings by Canon. Proc. SPIE. 2018; 10706: 107063L‑1-107063L‑6.
Zhou Q., Li L., Zeng L. A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings. Proc. SPIE. 2007; 6832: 68320W‑1-68320W‑9.
URL: http://www.zeiss.de/gratings.
URL: http://www.wophotonics.com.
URL: http://www.shimadzu.com/opt/
URL: http://www.gratinglab.com
URL: http://www.ssioptics.com
URL: http://www.gratingworks.com
Ai J., Du Q., Qin Zh., Liu J., Zeng X. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights. Optics Express. 2018; 26(16): 20965-20974.
Mel'nikov A. N., Lukin A. V., Muslimov E. R. Raschet parametrov neploskih difrakcionnyh reshetok dlya kompaktnyh svetosil'nyh spektrografov. Opticheskij zhurnal. 2019; 86(6): 7-10.
Patent RF № 2691821. Delitel'naya mashina mayatnikovogo tipa dlya izgotovleniya shtrihovyh struktur na neploskih rabochih poverhnostyah/Lukin A. V., Mel'nikov A. N.
Ahmetov M. M., Belozyorov A. F., Baloev V. A., Belokopytov A. A., Gajnutdinov I. S., Ivanov V. P., Lukin A. V., Mel'nikov A. N., Mogilyuk I. A. Nauchno-proizvodstvennyj kompleks serijnoj precizionnoj replikacii elementov asfericheskoj i difrakcionnoj optiki. Kontenant. 2016; 15(3): 39-42.
Patent RF № 2687515. Delitel'naya mashina mayatnikovogo tipa dlya izgotovleniya shtrihovyh struktur na vypuklyh cilindricheskih poverhnostyah/Lukin A. V., Mel'nikov A.N.
Gerasimov F. M., Yakovlev E. A. Difrakcionnye reshetki/Sovremennye tendencii v tekhnike spektroskopii. Novosibirsk: Nauka, 1982; 24-94.
Palmer C., Loewen E. Diffraction Grating Handbook. Rochester: Newport Corporation, 2005.
Yakovlev I. V. Stretchers and compressors for heavy duty laser systems. Quantum Electronics. 2014; 44(5): 393-414.
Baloev V. A., Ivanov V. P., Larionov N. P., Lukin A. V., Mel'nikov A. N., Skochilov A. F., Chugunov Yu. P., Uraskin A. M. Precizionnyj metod kontrolya yustirovki dvuhzerkal'nyh teleskopov na osnove ispol'zovaniya sistemy kol'cevyh sintezirovannyh gologramm. Opticheskij zhurnal. 2012; 79(3): 56-64.
Belozyorov A. F., Larionov N. P., Lukin A. V., Mel'nikov A. N. Osevye sintezirovannye gologrammnye opticheskie elementy: istoriya razvitiya, primeneniya. Part I. Photonics Russia. 2014; 4 (46): 12-32.
Список литературы
Liu Ch., Straif Ch., Flügel-Paul Th., Zeitner U. D., Gross H. Optical design and tolerancing of a hyperspectral imaging spectrometer. Proc. SPIE. 2016. V. 9947. P. 994703-1-994703-9.
Kendrick S. E., Woodruff R. A., Hull T., Heap S. R., Kutyrev A., Danchi W., Purves L. Multiplexing in Astrophysics with a UV multi-object spectrometer on CETUS, a Probe-class mission study. Proc. SPIE. 2017; 10401: 1040111-1-1040111-9.
Мельников А. Н., Муслимов Э. Р. Анализ вариантов оптической схемы светосильного изображающего спектрографа, построенного на основе выпуклой голограммной дифракционной решетки. Оптический журнал. 2019; 86(3): 32–39.
Павлычева Н. К. Спектральные приборы с неклассическими дифракционными решетками. Казань: Изд-во КГТУ, 2003.
Корпорация «Hitachi Group». URL: http://www.hitachi-hightech.com.
Холдинг АО «Швабе» / АО «НПО ГИПО». Каталог оптической компонентной базы / URL: http://shvabe. com/about/company/gosudarstvennyy-institut-prikladnoy-optiki/produktsiya-gipo/opticheskie-materialy.
Корпорация «HORIBA Jobin Yvon Ltd.» / URL: http://www.horiba.com/scientific/products/diffraction-gratings/.
Компания «ХолоГрэйт». URL: http://holograte.com/produktyi/golograficheskie-difrakczionnyie-resheniya/difrakczionnyie-reshetki-dlya-spektralnyix-priborov.
Верхогляд А. Г., Завьялова М. А., Касторский Л. Б., Качкин А. Е., Кокарев С. А., Корольков В. П., Моисеев О. Ю., Полещук А. Г., Шиманский Р. В. Круговая лазерная записывающая система для изготовления ДОЭ на сферических поверхностях. Интерэкспо ГЕО-Сибирь‑2015. ХI Междунар. науч. конгр.: Междунар. науч. конф. «СибОптика‑2015»: сб. материалов в 3 т. Новосибирск: СГУГиТ, 2015; 2: 62–68.
Компания «Altechna Company Group». URL: http://www.altechna.com.
Xu D., Owen J. D., Papa J. C., Reimers J., Suleski T. J., Troutman J. R., Davies M. A., Thompson K. P., Rolland J. P. Design, fabrication, and testing of convex reflective diffraction gratings. Optics Express. 2017; 25(13): 15252–15267.
Sukegawa T., Okura Yu., Nakayasu T. Commercial availability of astronomical machined gratings by Canon. Proc. SPIE. 2018; 10706: 107063L‑1-107063L‑6.
Zhou Q., Li L., Zeng L. A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings. Proc. SPIE. 2007; 6832: 68320W‑1-68320W‑9.
Компания Carl Zeiss Microscopy GmbH. URL: http://www.zeiss.de/gratings.
Компания Workshop of Photonics. URL: http://www.wophotonics.com.
Компания Shimadzu Corporation. URL: http://www.shimadzu.com/opt/
Компания Newport. URL: http://www.gratinglab.com
Компания Spectrum Scientific. URL: http://www.ssioptics.com
Компания GratingWorks. URL: http://www.gratingworks.com
Ai J., Du Q., Qin Zh., Liu J., Zeng X. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights. Optics Express. 2018; 26(16): 20965-20974.
Мельников А. Н., Лукин А. В., Муслимов Э. Р. Расчет параметров неплоских дифракционных решеток для компактных светосильных спектрографов. Оптический журнал. 2019; 86(6): 7-10.
Патент РФ № 2691821. Делительная машина маятникового типа для изготовления штриховых структур на неплоских рабочих поверхностях/Лукин А. В., Мельников А. Н.
Ахметов М. М., Белозёров А. Ф., Балоев В. А., Белокопытов А. А., Гайнутдинов И. С., Иванов В. П., Лукин А. В., Мельников А. Н., Могилюк И. А. Научно-производственный комплекс серийной прецизионной репликации элементов асферической и дифракционной оптики. Контенант. 2016; 15(3): 39-42.
Патент РФ на изобретение № 2687515. Делительная машина маятникового типа для изготовления штриховых структур на выпуклых цилиндрических поверхностях/Лукин А. В., Мельников А. Н.
Герасимов Ф. М., Яковлев Э. А. Дифракционные решетки/Современные тенденции в технике спектроскопии. Новосибирск: Наука, 1982; 24-94.
Palmer C., Loewen E. Diffraction Grating Handbook. Rochester: Newport Corporation, 2005.
Яковлев И. В. Стретчеры и компрессоры для сверхмощных лазерных систем. Квантовая электроника. 2014; 44(5): 393-414.
Балоев В. А., Иванов В. П., Ларионов Н. П., Лукин А. В., Мельников А. Н., Скочилов А. Ф., Чугунов Ю. П., Ураскин А. М. Прецизионный метод контроля юстировки двухзеркальных телескопов на основе использования системы кольцевых синтезированных голограмм. Оптический журнал. 2012; 79(3): 56-64.
Белозёров А., Ларионов Н., Лукин А., Мельников А. Осевые синтезированные голограммные оптические элементы: история развития, применения. Часть I. Фотоника. 2014; 46(4): 12-32.
ENGLISH VERSION PDF
(PDF, 4568.9 Kb)
A. N. Melnikov, gipo@telebit.ru JSC «NPO «State Institute of Applied Optics», Kazan, Russia
This paper touches upon the features and limitations of shaping techniques and promising application ranges of high-aperture diffraction optical elements. A number of applications require manufacturing ruled high-aperture diffraction optical elements on spherical and aspherical surfaces with a large sag, which is unachievable in practice with the existing manufacturing equipment. Engineering solutions have been suggested that open up the possibility to broaden the range of high-aperture diffraction optical elements basing on the use of pendulum-type ruling engines with subsequent replication of diffraction structure in the polymer layer.
Key words: high-aperture diffraction optical elements, high-aperture ruled gratings, shaping techniques, ranges of application, high-aperture compact spectrograph, pendulum-type ruling engine, master matrix, replication, photopolymers.
Received: 28.05.2019. Accepted: 16.07.2019.
When creating compact and high-aperture analytical spectral instruments for solving a number of problems of a fundamental, search and applied nature (basic research, monitoring of plasma radiation, remote sensing of the Earth from space, environmental monitoring, monitoring the chemical composition of substances, etc.), it is necessary to use reflective and transmitting high-aperture diffraction optical elements (DOE) with high diffraction efficiency on convex and concave spherical and aspherical surfaces with large sag (large steepness) of the working surface [1–4]. Such DOEs have both dispersing properties and optical power, which minimizes the mass and size characteristics of spectral instruments, as well as improves their energy and aberration characteristics.
Currently, the DOEs of this type are manufactured using the following technologies [5–20]:
- ruling technique implemented using ruling engines and high-precision lathes with numerical control;
- holographic techniques;
- photolithographic techniques;
- 3D polymerization in photopolymer materials.
As a reference, Table 1 shows the parameters of non-planar ruled and holographic diffraction gratings of the standard series, which are currently offered in the catalogues of some companies; Table 1 shows that the greatest value of the sag of the working surface for ruled diffraction gratings is 4.02 mm, for holograms – 8.02 mm. At the same time, as it is known, classic ruling techniques ensure the achievement of the highest values of diffraction efficiency, but they are inferior to holographic techniques in terms of aperture ratio.
Photolithographic technologies based on the use of direct laser recording equipment ensure the formation of the DOE structure on non-planar surfaces with sags of no more than 5.2 mm [9, 20]. The existing technological limitations are determined by the nature of the dependence of the size of the scattering spot of the recording laser system on the change in the angle between the normal to the working surface of the DOE and the optical axis of the forming lens, the sensitivity and contrast of the photographic material used, which results in uneven diffraction efficiency within the DOE free aperture.
3D polymerization in photopolymer materials makes it possible to obtain three-dimensional diffraction structures with a limited free aperture – only a few millimetres [10, 15].
Thus, currently the most promising direction, providing the possibility of creating high-aperture DOEs with high diffraction efficiency, is the implementation of ruling techniques with the need to develop a fundamentally new technological equipment.
In [21], an example of calculation and optimization of the optical scheme of a compact high-aperture spectrograph based on the use of a concave reflective non-classical ruled diffraction grating was considered. The optimized parameters of the optical scheme of the spectrograph are as follows:
- spatial frequency of the grating grooves at the apex 712 mm–1;
- the step unevenness coefficients are equal, respectively α = –0.00278, β = 2.702 · 10–6, Г = 6.433 · 10–8, Δ = 6.182 · 10–10, ε = 9.304 · 10–12;
- the angle of incidence is 5,7°, the diffraction angle at 600 nm is 19,157°, the rotation of the normal to the image surface is 8,387°;
- an image of the spectrum with a length of 2828 mm is formed on a concave cylindrical surface with a radius of 47.6 mm;
- inverse linear dispersion of 14.29 nm/mm;
- equivalent relative aperture 1 : 1,75.
The width of the apparatus function of the optimized circuit at half maximum is 100; 100 and 105.6 μm for 400, 600 and 800 nm, respectively. Given the inverse linear dispersion, the spectral resolution limit is 1.43; 1.43 and 1.51 nm for the same control wavelengths. For comparison, the width of the hardware function of the original circuit is 102.4; 137.6 and 172.8 microns. The spectral limit in this case is 1.49; 2.00 and 2.51 nm. Thus, the correction of residual aberrations introduced through the use of a variable increment of grooves allows for increasing the spectral resolution up to 1.66 times.
With a free aperture of 58.6 mm, the maximum calculated sag of its concave working surface is 4.54 mm. As shown above, the ruling (based on the use of classical ruling engines) and holographic techniques cannot solve the problem of obtaining such a diffraction structure on such a steep surface with a large sag while maintaining a high energy concentration in the working diffraction order and a moderate level of scattered light. This is explained by the fact that there are fundamental limitations in the design and kinematics of classical ruling engines constructed according to the Rowland scheme in the ruling techniques, and there are restrictions on diffraction efficiency in holographic techniques.
For technological problems of manufacturing diffraction gratings, it is proposed to use a new technical solution, pendulum-type ruling engine, with similar and larger (up to 50 mm) sags of working surfaces, which opens up the possibility of shaping high-aperture ruled diffraction gratings on convex spherical and aspherical surfaces [22]. A general view of the proposed pendulum ruling engine is shown in the figure.
In this case, a concave high-aperture non-classical diffraction grating with the parameters calculated above can be made by precision copying based on the use of thermo- or photopolymer compositions [23] with a convex ruled grating matrix made on a pendulum-type ruling engine. This approach provides a relatively high image quality and high diffraction efficiency in a compact and simple spectrograph scheme, as well as low cost and high performance, which is especially important in the serial production of a single optical element (replica concave diffraction gratings) in the optical scheme and the device as a whole.
It should be noted that the task of shaping ruled DOEs with a large sag on convex cylindrical surfaces is optimally solved using a pendulum-type ruling engine, the principles of which are also protected by the RF patent [24].
An important step in the technique of shaping high-aperture DOEs is the certification of their parameters, which includes control of their optical quality and diffraction efficiency in working orders and in a given spectral range. Optical quality control should be carried out by interferometric methods and means as the most informative ones. According to the results of decoding the corresponding interferograms, quantitative information is obtained about the main parameters of the DOE samples under study: the point scattering function, the line scattering function, the Strehl coefficient, and the mean-square deviation. To determine the diffraction efficiency (absolute and relative), known photometric methods and measuring instruments are used [25, 26].
We indicate promising areas of use of high-aperture DOEs:
- spectral part of the equipment for remote sensing of the Earth and research of space objects [1, 2];
- optical components of systems for compressing high-power laser pulses [27];
- compact imaging spectrographs [3];
- spectrographs based on the use of concave cylindrical diffraction gratings [4];
- converters of solar energy based on cylindrical DOEs;
- as precision master matrices in serial and mass production of spectral equipment;
- a system of alignment segments for synthesized DOEs to ensure the processes of precision assembly and alignment in telescope engineering [28, 29].
In conclusion, the following should be noted:
- of the four techniques considered, currently, only ruled and holographic ones are the most developed for the manufacture of high-aperture DOEs;
- due to the specifics of space-based spectral instruments (for Earth remote sensing and space object research), as well as spectral equipment intended for use in low light fluxes and/or in the short-wavelength region of the spectrum, in particular, on the basis of cylindrical diffraction gratings, at the moment, there is practically no alternative for ruled aperture DOEs;
- for the manufacture of ruled high-aperture DOEs, the most optimal and promising solution is the use of pendulum-type ruling techniques;
- for the serial production of spectral equipment based on the use of high-aperture concave reflective diffraction gratings with a given diffraction efficiency, as well as solar energy converters based on cylindrical aperture DOEs, it is advisable to initially produce master matrices on convex surfaces with the subsequent replication process.
Referance
Liu Ch., Straif Ch., Flügel-Paul Th., Zeitner U. D., Gross H. Optical design and tolerancing of a hyperspectral imaging spectrometer. Proc. SPIE. 2016. V. 9947. P. 994703-1-994703-9.
Kendrick S. E., Woodruff R. A., Hull T., Heap S. R., Kutyrev A., Danchi W., Purves L. Multiplexing in Astrophysics with a UV multi-object spectrometer on CETUS, a Probe-class mission study. Proc. SPIE. 2017; 10401: 1040111-1-1040111-9.
Mel'nikov A. N., Muslimov E. R. Analiz variantov opticheskoj skhemy svetosil'nogo izobrazhayushchego spektrografa, postroennogo na osnove vypukloj gologrammnoj difrakcionnoj reshetki. Opticheskij zhurnal. 2019; 86(3): 32-39.
Pavlycheva N. K. Spektral'nye pribory s neklassicheskimi difrakcionnymi reshetkami. Kazan': Izd-vo KGTU. 2003.
URL: http://www.hitachi-hightech.com.
URL: http://shvabe. com/about/company/gosudarstvennyy-institut-prikladnoy-optiki/produktsiya-gipo/opticheskie-materialy.
URL: http://www.horiba.com/scientific/products/diffraction-gratings/.
URL: http://holograte.com/produktyi/golograficheskie-difrakczionnyie-resheniya/difrakczionnyie-reshetki-dlya-spektralnyix-priborov.
Verhoglyad A. G., Zav'yalova M. A., Kastorskij L. B., Kachkin A. E., Kokarev S. A., Korol'kov V. P., Moiseev O. Yu., Poleshchuk A. G., Shimanskij R. V. Krugovaya lazernaya zapisyvayushchaya sistema dlya izgotovleniya DOE na sfericheskih poverhnostyah. Interekspo GEO-Sibir'-2015. HI Mezhdunar. nauch. kongr.: Mezhdunar. nauch. konf. 'SibOptika‑2015': sb. materialov v 3 t. Novosibirsk: SGUGiT, 2015; 2: 62-68.
URL: http://www.altechna.com.
Xu D., Owen J. D., Papa J. C., Reimers J., Suleski T. J., Troutman J. R., Davies M. A., Thompson K. P., Rolland J. P. Design, fabrication, and testing of convex reflective diffraction gratings. Optics Express. 2017; 25(13): 15252-15267.
Sukegawa T., Okura Yu., Nakayasu T. Commercial availability of astronomical machined gratings by Canon. Proc. SPIE. 2018; 10706: 107063L‑1-107063L‑6.
Zhou Q., Li L., Zeng L. A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings. Proc. SPIE. 2007; 6832: 68320W‑1-68320W‑9.
URL: http://www.zeiss.de/gratings.
URL: http://www.wophotonics.com.
URL: http://www.shimadzu.com/opt/
URL: http://www.gratinglab.com
URL: http://www.ssioptics.com
URL: http://www.gratingworks.com
Ai J., Du Q., Qin Zh., Liu J., Zeng X. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights. Optics Express. 2018; 26(16): 20965-20974.
Mel'nikov A. N., Lukin A. V., Muslimov E. R. Raschet parametrov neploskih difrakcionnyh reshetok dlya kompaktnyh svetosil'nyh spektrografov. Opticheskij zhurnal. 2019; 86(6): 7-10.
Patent RF № 2691821. Delitel'naya mashina mayatnikovogo tipa dlya izgotovleniya shtrihovyh struktur na neploskih rabochih poverhnostyah/Lukin A. V., Mel'nikov A. N.
Ahmetov M. M., Belozyorov A. F., Baloev V. A., Belokopytov A. A., Gajnutdinov I. S., Ivanov V. P., Lukin A. V., Mel'nikov A. N., Mogilyuk I. A. Nauchno-proizvodstvennyj kompleks serijnoj precizionnoj replikacii elementov asfericheskoj i difrakcionnoj optiki. Kontenant. 2016; 15(3): 39-42.
Patent RF № 2687515. Delitel'naya mashina mayatnikovogo tipa dlya izgotovleniya shtrihovyh struktur na vypuklyh cilindricheskih poverhnostyah/Lukin A. V., Mel'nikov A.N.
Gerasimov F. M., Yakovlev E. A. Difrakcionnye reshetki/Sovremennye tendencii v tekhnike spektroskopii. Novosibirsk: Nauka, 1982; 24-94.
Palmer C., Loewen E. Diffraction Grating Handbook. Rochester: Newport Corporation, 2005.
Yakovlev I. V. Stretchers and compressors for heavy duty laser systems. Quantum Electronics. 2014; 44(5): 393-414.
Baloev V. A., Ivanov V. P., Larionov N. P., Lukin A. V., Mel'nikov A. N., Skochilov A. F., Chugunov Yu. P., Uraskin A. M. Precizionnyj metod kontrolya yustirovki dvuhzerkal'nyh teleskopov na osnove ispol'zovaniya sistemy kol'cevyh sintezirovannyh gologramm. Opticheskij zhurnal. 2012; 79(3): 56-64.
Belozyorov A. F., Larionov N. P., Lukin A. V., Mel'nikov A. N. Osevye sintezirovannye gologrammnye opticheskie elementy: istoriya razvitiya, primeneniya. Part I. Photonics Russia. 2014; 4 (46): 12-32.
Список литературы
Liu Ch., Straif Ch., Flügel-Paul Th., Zeitner U. D., Gross H. Optical design and tolerancing of a hyperspectral imaging spectrometer. Proc. SPIE. 2016. V. 9947. P. 994703-1-994703-9.
Kendrick S. E., Woodruff R. A., Hull T., Heap S. R., Kutyrev A., Danchi W., Purves L. Multiplexing in Astrophysics with a UV multi-object spectrometer on CETUS, a Probe-class mission study. Proc. SPIE. 2017; 10401: 1040111-1-1040111-9.
Мельников А. Н., Муслимов Э. Р. Анализ вариантов оптической схемы светосильного изображающего спектрографа, построенного на основе выпуклой голограммной дифракционной решетки. Оптический журнал. 2019; 86(3): 32–39.
Павлычева Н. К. Спектральные приборы с неклассическими дифракционными решетками. Казань: Изд-во КГТУ, 2003.
Корпорация «Hitachi Group». URL: http://www.hitachi-hightech.com.
Холдинг АО «Швабе» / АО «НПО ГИПО». Каталог оптической компонентной базы / URL: http://shvabe. com/about/company/gosudarstvennyy-institut-prikladnoy-optiki/produktsiya-gipo/opticheskie-materialy.
Корпорация «HORIBA Jobin Yvon Ltd.» / URL: http://www.horiba.com/scientific/products/diffraction-gratings/.
Компания «ХолоГрэйт». URL: http://holograte.com/produktyi/golograficheskie-difrakczionnyie-resheniya/difrakczionnyie-reshetki-dlya-spektralnyix-priborov.
Верхогляд А. Г., Завьялова М. А., Касторский Л. Б., Качкин А. Е., Кокарев С. А., Корольков В. П., Моисеев О. Ю., Полещук А. Г., Шиманский Р. В. Круговая лазерная записывающая система для изготовления ДОЭ на сферических поверхностях. Интерэкспо ГЕО-Сибирь‑2015. ХI Междунар. науч. конгр.: Междунар. науч. конф. «СибОптика‑2015»: сб. материалов в 3 т. Новосибирск: СГУГиТ, 2015; 2: 62–68.
Компания «Altechna Company Group». URL: http://www.altechna.com.
Xu D., Owen J. D., Papa J. C., Reimers J., Suleski T. J., Troutman J. R., Davies M. A., Thompson K. P., Rolland J. P. Design, fabrication, and testing of convex reflective diffraction gratings. Optics Express. 2017; 25(13): 15252–15267.
Sukegawa T., Okura Yu., Nakayasu T. Commercial availability of astronomical machined gratings by Canon. Proc. SPIE. 2018; 10706: 107063L‑1-107063L‑6.
Zhou Q., Li L., Zeng L. A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings. Proc. SPIE. 2007; 6832: 68320W‑1-68320W‑9.
Компания Carl Zeiss Microscopy GmbH. URL: http://www.zeiss.de/gratings.
Компания Workshop of Photonics. URL: http://www.wophotonics.com.
Компания Shimadzu Corporation. URL: http://www.shimadzu.com/opt/
Компания Newport. URL: http://www.gratinglab.com
Компания Spectrum Scientific. URL: http://www.ssioptics.com
Компания GratingWorks. URL: http://www.gratingworks.com
Ai J., Du Q., Qin Zh., Liu J., Zeng X. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights. Optics Express. 2018; 26(16): 20965-20974.
Мельников А. Н., Лукин А. В., Муслимов Э. Р. Расчет параметров неплоских дифракционных решеток для компактных светосильных спектрографов. Оптический журнал. 2019; 86(6): 7-10.
Патент РФ № 2691821. Делительная машина маятникового типа для изготовления штриховых структур на неплоских рабочих поверхностях/Лукин А. В., Мельников А. Н.
Ахметов М. М., Белозёров А. Ф., Балоев В. А., Белокопытов А. А., Гайнутдинов И. С., Иванов В. П., Лукин А. В., Мельников А. Н., Могилюк И. А. Научно-производственный комплекс серийной прецизионной репликации элементов асферической и дифракционной оптики. Контенант. 2016; 15(3): 39-42.
Патент РФ на изобретение № 2687515. Делительная машина маятникового типа для изготовления штриховых структур на выпуклых цилиндрических поверхностях/Лукин А. В., Мельников А. Н.
Герасимов Ф. М., Яковлев Э. А. Дифракционные решетки/Современные тенденции в технике спектроскопии. Новосибирск: Наука, 1982; 24-94.
Palmer C., Loewen E. Diffraction Grating Handbook. Rochester: Newport Corporation, 2005.
Яковлев И. В. Стретчеры и компрессоры для сверхмощных лазерных систем. Квантовая электроника. 2014; 44(5): 393-414.
Балоев В. А., Иванов В. П., Ларионов Н. П., Лукин А. В., Мельников А. Н., Скочилов А. Ф., Чугунов Ю. П., Ураскин А. М. Прецизионный метод контроля юстировки двухзеркальных телескопов на основе использования системы кольцевых синтезированных голограмм. Оптический журнал. 2012; 79(3): 56-64.
Белозёров А., Ларионов Н., Лукин А., Мельников А. Осевые синтезированные голограммные оптические элементы: история развития, применения. Часть I. Фотоника. 2014; 46(4): 12-32.
Readers feedback