Ультрафиолетовый флуоресцентно-аэрозольный лидар "ФАРАН-М1" позволяет в полевых условиях в любое время суток не только оперативно оценивать оптическое состояние атмосферы, но и обнаруживать аэрозоли биогенного происхождения на фоне аэрозолей другой природы. Широкие возможности прибора связаны с его работой на двух каналах: дальность действия УФ-канала лидара по биогенным аэрозолям достигает 4 км, ИК-канала по облакам – превышает 50 км.
Принцип "выделения" биоаэрозолей
Для дистанционного обнаружения в атмосфере и идентификации физиологически активных веществ (ФАВ), включая бактерии и вирусы, могут быть использованы такие методы лазерного зондирования, как лазерно-индуцированная флуоресценция (ЛИФ), комбинационное рассеяние (КР) и эмиссионная спектроскопия в лазерной плазме. Первый метод имеет наивысшую чувствительность, а второй – потенциально бόльшую селективность. Большинство биологических клеток содержат в своем составе аминокислоты (тирозин, триптофан, фенилаланин), нуклеотиды и флавины [1], именно это отличает их от неорганического аэрозоля. Все эти молекулы флуоресцируют при возбуждении в ближней УФ-области спектра (рис.1).
В белках, которые содержат триптофан и другие флуоресцентные аминокислоты, обычно энергия, поглощенная фенилаланином и тирозином, обычно передается триптофану и проявляется в свечении в диапазоне около 350 нм. Кроме того, содержание триптофана в белке примерно в 10000 раз больше, чем тирозина и NADH (никотинамидаденин-динуклеотид восстановленный). Поэтому именно триптофан чаще всего выбирается в качестве маркера биологического объекта.
Экспериментальные исследования прототипов лидаров для обнаружения биогенных аэрозолей проводились с начала 90-х годов [3–5], о мобильном образце сообщается в [6].
Описание лидара "ФАРАН-М1"
В лидаре (рис.2) реализована схема одновременного наблюдения лидарных сигналов упругого рассеяния и флуоресценции при облучении среды на лазерных длинах волн 1064 и 266 нм соответственно, причем в ИК-канале сигнал формируется аэрозолями любой природы, а в УФ-канале – аэрозолями только биогенного происхождения. В комплект лидара входят два бензоэлектрогенератора, транспортируемых тем же автомобилем. В городских условиях лидар можно подключить к однофазной сети 220 В. Приемо-передатчик, система сканирования и управления лидаром конструктивно объединены в единый модуль, установленный в автомобильный носитель. Во время движения рабочий объем кабины закрыт, при проведении измерений носитель останавливается, устанавливается на домкраты и лидар выдвигается в люк на крыше.
Сканирующая система выполнена по целостатной схеме, что позволяет наводить лидар в любую точку верхней полусферы. Зеркала 1, 2 размером 350×500 мм выполнены из монолитного ситалла и покрыты слоем алюминия (с подслоем титана), защищенного пленкой Al2O3. Для исключения осаждения влаги при пониженных температурах на поверхности зеркал с обратной стороны зеркала установлены нагреватели, выполненные из нихромового провода Х20Н80. Сканирующая система установлена на подшипнике VLA 200544-N (INA, Германия) с внутренним диаметром 400 мм, обеспечивающим поворот системы вокруг вертикальной оси. Привод выполнен на шаговом двигателе 3 FL86STH118 (CHANGZHOU FULLING ELECTRONICS, Китай) и осуществляется через редуктор G150 той же фирмы и шестеренчатую передачу 4. Для определения угла поворота двигателя на нем установлен инкрементный энкодер типа 5020 (Kuebler, Германия). Сканирование вокруг горизонтальной оси осуществляется поворотом зеркала 2, приводящегося в движение аналогичным шаговым двигателем с редуктором. Максимальная скорость сканирования составляет 1 градус в секунду, шаг сканирования около 1 угловой минуты. Углы поворота системы вокруг обеих осей ограничены концевыми оптическими датчиками HOA2005 (Honeywell, США). На зеркале 2 закреплен телевизионный гид, в качестве которого служит видеокамера VCC-ZM600P (Sanyo, Корея), установленный параллельно направлению зондирования. Гид размещен в теплоизолирующем боксе SVS L-260 (Россия). Рядом с гидом установлен датчик ИПВТ-03М-01 термогигрометра ИВТМ-7 МК-С (ЗАО "Эксис", Россия), показания которого используются при расчете пропускания атмосферы на рабочих длинах волн в УФ-диапазоне спектра. Сканирующая система показана на рис.3.
Питание электродвигателей и системы подогрева, а также передача сигналов датчиков и видеокамеры осуществляется по проводам и кабелям, уложенным в подвижный кабель-канал RV020CR (CP SYSTEMS CO., LTD, Корея). Аналогичный кабель-канал используется для подключения лидара к бортовой электрической и информационной сети автомобиля. Лазерное излучение, направляемое в атмосферу, оптически изолировано от канала приема с помощью подвижного экрана 5 цилиндрической формы. Основной несущей конструкцией лидара является ферма 6 (на рисунке показана условно), к которой на раме прикреплена сканирующая система. На ферме смонтированы четыре упора 7, к которым прикреплены винтовые домкраты, выдвигающие лидар из кабины в рабочее положение.
Источником излучения в лидаре является специально разработанный фирмой ЛОТИС ТИИ (Республика Беларусь) лазер 8 LS-2137/20 на алюмоиттриевом гранате. Излучение лазера последовательно преобразуется во вторую (длина волны 532 нм) и четвертую (266 нм) гармоники в нелинейно-оптических кристаллах КТР и DKDP соответственно. Оптическая схема лазера выполнена таким образом, что излучение всех гармоник выходит соосно. Энергия выходного излучения на длинах волн 1064 и 266 нм при частоте повторения импульсов 20 Гц составляет 250 и 80 мДж соответственно, на длине волны 532 нм не превышает 10 мДж.
Специально разработанный трехлинзовый коллиматор 9 ахроматизирован для длин волн 1064 и 266 нм и уменьшает до 0,18–0,2 мрад расходимость излучения (защищен Российским патентом [7]). Между лазером и коллиматором установлен электромеханический затвор, в случае необходимости перекрывающий излучение лазера. Коллимированное излучение с помощью двух призм из кварцевого стекла КУ-1, одна из которых юстируется (на рис.4 не показана), а вторая 10 неподвижна, выводится на оптическую ось приемного телескопа 11 и далее в атмосферу через два плоских зеркала 1 и 2.
Рассеянное атмосферным объектом излучение этими же зеркалами направляется в выполненный по схеме Мерсена приемный телескоп, образованный двумя параболическими зеркалами диаметром 350 и 50 мм. Приемный телескоп защищен от попадания фонового излучения и пыли кожухом 12. Сформированный телескопом параллельный пучок с помощью дополнительного плоского зеркала выводится из телескопа и направляется в фотоприемные модули (рис.5), расположенные в светозащищенном фотоприемном блоке 13. Электрические сигналы с модулей направляются для обработки и анализа в промышленный компьютер производства фирмы ADVANTECH, Тайвань.
Оптическая схема фотоприемного блока представлена на рис.5. На входе приемной системы установлен дихроичный спектроделитель 1: ИК-излучение с длиной волны 1064 нм пропускается, а УФ-излучение в регистрируемой полосе длин волн 325–375 нм отражается. За спектроделителем установлены обрезающие фильтры 2 и 8, которые на 4–5 порядков величины ослабляют рассеянное излучение на длине волны зондирования 266 нм. Далее ИК-излучение направляется в систему линз 3 и 5 с промежуточной диафрагмой 4 (УФ-излучение в элементы 9–11, соответственно). Размер диафрагм определяет угловое поле зрения лидарной системы в ИК- и УФ-каналах, а их положение – направление, в котором "смотрит" приемная система. Для точной настройки лидара используют сменные диафрагмы (с разными диаметрами) с возможностью перемещения в поперечных к оптической оси направлениях.
Почти параллельный пучок ИК-излучения, выходящий из линзы 5, направляется через интерференционный фильтр 6 в фотоприемный модуль 7, имеющий собственную входную оптическую систему. Динамический диапазон работы ИК-фотодиода С30956Е-ТС (Perkin&Elmer, США) достаточен для обеспечения заданного диапазона рабочих дальностей лидара. Для согласования динамического диапазона фотодиода с диапазоном работы аналого-цифрового преобразователя и повышения точности измерений модуль Si-AVALANCHE PHOTODIODE MODULE (Фалкон ЛС, Республика Беларусь), приемным элементом которого является фотодиод, имеет два выхода с отличающейся в 10 раз амплитудой сигнала.
По аналогичной схеме 8–12 формируется пучок в УФ-канале. В этом канале вариация сигналов больше, так что используются два модуля 16, 17, в одном из которых фотоумножитель R960 (HAMAMATSU, Япония) работает в аналоговом режиме (этот модуль также имеет два выхода), а во втором – Н5783-Р (HAMAMATSU) – в счетнофотонном. Поэтому после прохождения интерференционного фильтра излучение полупрозрачным зеркалом (13) делится на два пучка. Каждый пучок для согласования с размером катода ФЭУ (8 мм) слегка фокусируется линзами (14 и 15). Поверхности всех оптических компонентов, работающих в проходящих лучах, просветлены на соответствующие длины волн.
Сигналы с модулей 7 и 16 поступают в два двухканальных аналого-цифровых преобразователя Ла-н20-12PCI (ООО "Руднев-Шиляев", Россия), выполненные в виде плат, устанавливаемых в компьютер. Импульсы с модуля 17 поступают в счетчик PhC-USB разработки ИОА СО РАН, выполненный в виде отдельного устройства, и далее в компьютер. Поступающие сигналы (два в ИК- канале и три в УФ- канале) в компьютере "сшиваются". Основные технические характеристики лидара указаны в таблице.
Испытания лидара
Лидар "ФАРАН-М1" был разработан, спроектирован, изготовлен, испытан и введен в опытную эксплуатацию в 2008 году. Испытания лидара проводились по обширной программе и, в частности, проводилось зондирование искусственного аэрозольного образования, создаваемого за счет распыления водных растворов аминокислот триптофана и лизина и суспензии кишечной палочки E. coli.
В выделенной эллипсом зоне показана зависимость сигнала от дальности зондирования (вертикальная ось) и времени (горизонтальная ось); величина сигнала выражена в условных цветах (шкала справа). Генератор аэрозоля работал в интервале времени, соответствующем номерам импульсов от 40 до 270. Испытательный туннель, в котором находилось искусственное образование, распологался на расстоянии 570 м от лидара, и сигнал с этой дистанции был наиболее сильным. Под действием ветра аэрозоль выносился из туннеля и постепенно рассеивался, но, тем не менее, прослеживался лидаром до дальности 700–750 м.
На рис.7 показаны зависимости сигнала флуоресценции от концентрации аэрозоля; дальность зондирования составляла около 1000 м. Основные эксплуатационные достоинства лидара явились следствием того, что в его работе новые технические решения сочетаются с методикой УФ- и ИК-измерений. Прибор обладает преимуществами перед существующими зарубежными аналогами: лидар может производить полевые измерения в любом доступном месте благодаря установке на автомобильном носителе; наличие двух каналов (ИК- и УФ-диапазона), которые с помощью оригинальной оптической системы работают одновременно при одной посылке лазерного излучения, позволяет оперативно обнаруживать присутствие аэрозоля биогенного происхождения на фоне аэрозолей другой природы; лидар одновременно регистрирует сигналы в аналоговом и счетно-фотонном режимах, это позволяет эксплуатировать оборудование в любое время суток благодаря увеличению дальности зондирования как минимум в 3–4 раза; высокий энергетический потенциал прибора создает условия для эффективного контроля антропогенного загрязнения территорий и исследований аэрозольных слоев до высот
20–25 км.
Сканирующий лидар "ФАРАН-М1" позволяет оценить интенсивность выбросов локальных источников загрязнений и картировать их аэрозольные шлейфы над городом. Его мобильность незаменима для предотвращения биологических террористических действий. Разрабатывали прибор многие сотрудники: к.ф.-м.н. Балин Ю., н.с. Климкин А., инженеры Куряк А., Рынков О. и Новоселов М., д.ф.-м.н. Пономарев Ю., к.ф.-м.н. Симонова Г. Лидар получил диплом III степени Лазерной Ассоциации стран СНГ и Балтии на 5-й международной выставке лазерной, оптической и оптоэлектронной техники «Фотоника-2010».
ЛИТЕРАТУРА
1. Лакович Дж. Основы флуоресцентной спектроскопии. Пер. с англ. – М.: Мир, 1986.
2. Hill, S.C., Pinnick, R.G., Niles, S. et al. Real-time measurement of fluorescence spectra from single airborne biological particles. – Field Anal Chem Tech, 1999, v.3 (№4–5).
3. Steven D. Christesen, Clifton N. et al. UV fluorescence lidar detection of bioaerosols. – Proc. SPIE, 1994, v. 2222.
4. De Sha M., Dolash T. and Ross B. Tunable Ultraviolet LIDAR. – Proc.SPIE, 2000, v. 4036.
5. Buteau S., Simard J., Déry B. et al. Bioaerosols Laser-Induced Fluorescence provides specific robust signatures for standoff detection. – Proc. SPIE, 2006, v. 6378.
6. http://www.fibertek.com/Projects_05_Bio.html.
7. Симонова Г., Макогон М., Пономарев Ю. и др. Ахроматический расширитель лазерного пучка для УФ- и ИК-областей спектра. Патент РФ на полезную модель № 89727, приоритет от 27.07.2009.
Для дистанционного обнаружения в атмосфере и идентификации физиологически активных веществ (ФАВ), включая бактерии и вирусы, могут быть использованы такие методы лазерного зондирования, как лазерно-индуцированная флуоресценция (ЛИФ), комбинационное рассеяние (КР) и эмиссионная спектроскопия в лазерной плазме. Первый метод имеет наивысшую чувствительность, а второй – потенциально бόльшую селективность. Большинство биологических клеток содержат в своем составе аминокислоты (тирозин, триптофан, фенилаланин), нуклеотиды и флавины [1], именно это отличает их от неорганического аэрозоля. Все эти молекулы флуоресцируют при возбуждении в ближней УФ-области спектра (рис.1).
В белках, которые содержат триптофан и другие флуоресцентные аминокислоты, обычно энергия, поглощенная фенилаланином и тирозином, обычно передается триптофану и проявляется в свечении в диапазоне около 350 нм. Кроме того, содержание триптофана в белке примерно в 10000 раз больше, чем тирозина и NADH (никотинамидаденин-динуклеотид восстановленный). Поэтому именно триптофан чаще всего выбирается в качестве маркера биологического объекта.
Экспериментальные исследования прототипов лидаров для обнаружения биогенных аэрозолей проводились с начала 90-х годов [3–5], о мобильном образце сообщается в [6].
Описание лидара "ФАРАН-М1"
В лидаре (рис.2) реализована схема одновременного наблюдения лидарных сигналов упругого рассеяния и флуоресценции при облучении среды на лазерных длинах волн 1064 и 266 нм соответственно, причем в ИК-канале сигнал формируется аэрозолями любой природы, а в УФ-канале – аэрозолями только биогенного происхождения. В комплект лидара входят два бензоэлектрогенератора, транспортируемых тем же автомобилем. В городских условиях лидар можно подключить к однофазной сети 220 В. Приемо-передатчик, система сканирования и управления лидаром конструктивно объединены в единый модуль, установленный в автомобильный носитель. Во время движения рабочий объем кабины закрыт, при проведении измерений носитель останавливается, устанавливается на домкраты и лидар выдвигается в люк на крыше.
Сканирующая система выполнена по целостатной схеме, что позволяет наводить лидар в любую точку верхней полусферы. Зеркала 1, 2 размером 350×500 мм выполнены из монолитного ситалла и покрыты слоем алюминия (с подслоем титана), защищенного пленкой Al2O3. Для исключения осаждения влаги при пониженных температурах на поверхности зеркал с обратной стороны зеркала установлены нагреватели, выполненные из нихромового провода Х20Н80. Сканирующая система установлена на подшипнике VLA 200544-N (INA, Германия) с внутренним диаметром 400 мм, обеспечивающим поворот системы вокруг вертикальной оси. Привод выполнен на шаговом двигателе 3 FL86STH118 (CHANGZHOU FULLING ELECTRONICS, Китай) и осуществляется через редуктор G150 той же фирмы и шестеренчатую передачу 4. Для определения угла поворота двигателя на нем установлен инкрементный энкодер типа 5020 (Kuebler, Германия). Сканирование вокруг горизонтальной оси осуществляется поворотом зеркала 2, приводящегося в движение аналогичным шаговым двигателем с редуктором. Максимальная скорость сканирования составляет 1 градус в секунду, шаг сканирования около 1 угловой минуты. Углы поворота системы вокруг обеих осей ограничены концевыми оптическими датчиками HOA2005 (Honeywell, США). На зеркале 2 закреплен телевизионный гид, в качестве которого служит видеокамера VCC-ZM600P (Sanyo, Корея), установленный параллельно направлению зондирования. Гид размещен в теплоизолирующем боксе SVS L-260 (Россия). Рядом с гидом установлен датчик ИПВТ-03М-01 термогигрометра ИВТМ-7 МК-С (ЗАО "Эксис", Россия), показания которого используются при расчете пропускания атмосферы на рабочих длинах волн в УФ-диапазоне спектра. Сканирующая система показана на рис.3.
Питание электродвигателей и системы подогрева, а также передача сигналов датчиков и видеокамеры осуществляется по проводам и кабелям, уложенным в подвижный кабель-канал RV020CR (CP SYSTEMS CO., LTD, Корея). Аналогичный кабель-канал используется для подключения лидара к бортовой электрической и информационной сети автомобиля. Лазерное излучение, направляемое в атмосферу, оптически изолировано от канала приема с помощью подвижного экрана 5 цилиндрической формы. Основной несущей конструкцией лидара является ферма 6 (на рисунке показана условно), к которой на раме прикреплена сканирующая система. На ферме смонтированы четыре упора 7, к которым прикреплены винтовые домкраты, выдвигающие лидар из кабины в рабочее положение.
Источником излучения в лидаре является специально разработанный фирмой ЛОТИС ТИИ (Республика Беларусь) лазер 8 LS-2137/20 на алюмоиттриевом гранате. Излучение лазера последовательно преобразуется во вторую (длина волны 532 нм) и четвертую (266 нм) гармоники в нелинейно-оптических кристаллах КТР и DKDP соответственно. Оптическая схема лазера выполнена таким образом, что излучение всех гармоник выходит соосно. Энергия выходного излучения на длинах волн 1064 и 266 нм при частоте повторения импульсов 20 Гц составляет 250 и 80 мДж соответственно, на длине волны 532 нм не превышает 10 мДж.
Специально разработанный трехлинзовый коллиматор 9 ахроматизирован для длин волн 1064 и 266 нм и уменьшает до 0,18–0,2 мрад расходимость излучения (защищен Российским патентом [7]). Между лазером и коллиматором установлен электромеханический затвор, в случае необходимости перекрывающий излучение лазера. Коллимированное излучение с помощью двух призм из кварцевого стекла КУ-1, одна из которых юстируется (на рис.4 не показана), а вторая 10 неподвижна, выводится на оптическую ось приемного телескопа 11 и далее в атмосферу через два плоских зеркала 1 и 2.
Рассеянное атмосферным объектом излучение этими же зеркалами направляется в выполненный по схеме Мерсена приемный телескоп, образованный двумя параболическими зеркалами диаметром 350 и 50 мм. Приемный телескоп защищен от попадания фонового излучения и пыли кожухом 12. Сформированный телескопом параллельный пучок с помощью дополнительного плоского зеркала выводится из телескопа и направляется в фотоприемные модули (рис.5), расположенные в светозащищенном фотоприемном блоке 13. Электрические сигналы с модулей направляются для обработки и анализа в промышленный компьютер производства фирмы ADVANTECH, Тайвань.
Оптическая схема фотоприемного блока представлена на рис.5. На входе приемной системы установлен дихроичный спектроделитель 1: ИК-излучение с длиной волны 1064 нм пропускается, а УФ-излучение в регистрируемой полосе длин волн 325–375 нм отражается. За спектроделителем установлены обрезающие фильтры 2 и 8, которые на 4–5 порядков величины ослабляют рассеянное излучение на длине волны зондирования 266 нм. Далее ИК-излучение направляется в систему линз 3 и 5 с промежуточной диафрагмой 4 (УФ-излучение в элементы 9–11, соответственно). Размер диафрагм определяет угловое поле зрения лидарной системы в ИК- и УФ-каналах, а их положение – направление, в котором "смотрит" приемная система. Для точной настройки лидара используют сменные диафрагмы (с разными диаметрами) с возможностью перемещения в поперечных к оптической оси направлениях.
Почти параллельный пучок ИК-излучения, выходящий из линзы 5, направляется через интерференционный фильтр 6 в фотоприемный модуль 7, имеющий собственную входную оптическую систему. Динамический диапазон работы ИК-фотодиода С30956Е-ТС (Perkin&Elmer, США) достаточен для обеспечения заданного диапазона рабочих дальностей лидара. Для согласования динамического диапазона фотодиода с диапазоном работы аналого-цифрового преобразователя и повышения точности измерений модуль Si-AVALANCHE PHOTODIODE MODULE (Фалкон ЛС, Республика Беларусь), приемным элементом которого является фотодиод, имеет два выхода с отличающейся в 10 раз амплитудой сигнала.
По аналогичной схеме 8–12 формируется пучок в УФ-канале. В этом канале вариация сигналов больше, так что используются два модуля 16, 17, в одном из которых фотоумножитель R960 (HAMAMATSU, Япония) работает в аналоговом режиме (этот модуль также имеет два выхода), а во втором – Н5783-Р (HAMAMATSU) – в счетнофотонном. Поэтому после прохождения интерференционного фильтра излучение полупрозрачным зеркалом (13) делится на два пучка. Каждый пучок для согласования с размером катода ФЭУ (8 мм) слегка фокусируется линзами (14 и 15). Поверхности всех оптических компонентов, работающих в проходящих лучах, просветлены на соответствующие длины волн.
Сигналы с модулей 7 и 16 поступают в два двухканальных аналого-цифровых преобразователя Ла-н20-12PCI (ООО "Руднев-Шиляев", Россия), выполненные в виде плат, устанавливаемых в компьютер. Импульсы с модуля 17 поступают в счетчик PhC-USB разработки ИОА СО РАН, выполненный в виде отдельного устройства, и далее в компьютер. Поступающие сигналы (два в ИК- канале и три в УФ- канале) в компьютере "сшиваются". Основные технические характеристики лидара указаны в таблице.
Испытания лидара
Лидар "ФАРАН-М1" был разработан, спроектирован, изготовлен, испытан и введен в опытную эксплуатацию в 2008 году. Испытания лидара проводились по обширной программе и, в частности, проводилось зондирование искусственного аэрозольного образования, создаваемого за счет распыления водных растворов аминокислот триптофана и лизина и суспензии кишечной палочки E. coli.
В выделенной эллипсом зоне показана зависимость сигнала от дальности зондирования (вертикальная ось) и времени (горизонтальная ось); величина сигнала выражена в условных цветах (шкала справа). Генератор аэрозоля работал в интервале времени, соответствующем номерам импульсов от 40 до 270. Испытательный туннель, в котором находилось искусственное образование, распологался на расстоянии 570 м от лидара, и сигнал с этой дистанции был наиболее сильным. Под действием ветра аэрозоль выносился из туннеля и постепенно рассеивался, но, тем не менее, прослеживался лидаром до дальности 700–750 м.
На рис.7 показаны зависимости сигнала флуоресценции от концентрации аэрозоля; дальность зондирования составляла около 1000 м. Основные эксплуатационные достоинства лидара явились следствием того, что в его работе новые технические решения сочетаются с методикой УФ- и ИК-измерений. Прибор обладает преимуществами перед существующими зарубежными аналогами: лидар может производить полевые измерения в любом доступном месте благодаря установке на автомобильном носителе; наличие двух каналов (ИК- и УФ-диапазона), которые с помощью оригинальной оптической системы работают одновременно при одной посылке лазерного излучения, позволяет оперативно обнаруживать присутствие аэрозоля биогенного происхождения на фоне аэрозолей другой природы; лидар одновременно регистрирует сигналы в аналоговом и счетно-фотонном режимах, это позволяет эксплуатировать оборудование в любое время суток благодаря увеличению дальности зондирования как минимум в 3–4 раза; высокий энергетический потенциал прибора создает условия для эффективного контроля антропогенного загрязнения территорий и исследований аэрозольных слоев до высот
20–25 км.
Сканирующий лидар "ФАРАН-М1" позволяет оценить интенсивность выбросов локальных источников загрязнений и картировать их аэрозольные шлейфы над городом. Его мобильность незаменима для предотвращения биологических террористических действий. Разрабатывали прибор многие сотрудники: к.ф.-м.н. Балин Ю., н.с. Климкин А., инженеры Куряк А., Рынков О. и Новоселов М., д.ф.-м.н. Пономарев Ю., к.ф.-м.н. Симонова Г. Лидар получил диплом III степени Лазерной Ассоциации стран СНГ и Балтии на 5-й международной выставке лазерной, оптической и оптоэлектронной техники «Фотоника-2010».
ЛИТЕРАТУРА
1. Лакович Дж. Основы флуоресцентной спектроскопии. Пер. с англ. – М.: Мир, 1986.
2. Hill, S.C., Pinnick, R.G., Niles, S. et al. Real-time measurement of fluorescence spectra from single airborne biological particles. – Field Anal Chem Tech, 1999, v.3 (№4–5).
3. Steven D. Christesen, Clifton N. et al. UV fluorescence lidar detection of bioaerosols. – Proc. SPIE, 1994, v. 2222.
4. De Sha M., Dolash T. and Ross B. Tunable Ultraviolet LIDAR. – Proc.SPIE, 2000, v. 4036.
5. Buteau S., Simard J., Déry B. et al. Bioaerosols Laser-Induced Fluorescence provides specific robust signatures for standoff detection. – Proc. SPIE, 2006, v. 6378.
6. http://www.fibertek.com/Projects_05_Bio.html.
7. Симонова Г., Макогон М., Пономарев Ю. и др. Ахроматический расширитель лазерного пучка для УФ- и ИК-областей спектра. Патент РФ на полезную модель № 89727, приоритет от 27.07.2009.
Отзывы читателей