ДЕЛОВЫЕ ЛЮДИ
АСТРОН: ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ БИЗНЕСА
О технике применения тепловизионных оптико-электронных систем
ТЕХНОЛОГИИ И ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ
ЗАБУДЬТЕ ВСЕ, ЧТО ВЫ ЗНАЛИ О КЛАССИЧЕСКОЙ 3D-ПЕЧАТИ
Cистемы 3D-печати с особой компоновкой
РАДИОФОТОНИКА
«ТОЧКА» И ВСЕ
О создании радиолазерных комплексов для решения задач космической геодезии и навигации
ОПТИЧЕСКИЕ УСТРОЙСТВА И СИСТЕМЫ
ОПТИЧЕСКИЙ ПЕЛЕНГАТОР
Оптическое наведение для автономной посадки космического зонда на малые тела Солнечной системы

sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей Политикой Конфиденциальности
Согласен
Поиск:

Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
TS_pub
technospheramag
technospheramag
ТЕХНОСФЕРА_РИЦ
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта

Яндекс.Метрика
R&W
 
 
Вход:

Ваш e-mail:
Пароль:
 
Регистрация
Забыли пароль?
Книги по фотонике
Урик Винсент Дж.-мл., МакКинни Джейсон Д., Вилльямс Кейт Дж.
Другие серии книг:
Мир фотоники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Аннотации выпуска #5/2022
Business People
Деловые люди
V. V. Startsev
Astrohn: Business Technological Security
DOI: 10.22184/1993-7296.FRos.2022.16.5.352.357
В. В. Старцев
АСТРОН: технологическая безопасность бизнеса
DOI: 10.22184/1993-7296.FRos.2022.16.5.352.357

Компания «АСТРОН» – один из лидеров российского рынка высокотехнологического оптико-электронного приборостроения. В последние годы стала особо заметна динамика развития компании: увеличилось число выпускаемых продуктов, расширились
занимаемые рыночные ниши, было приобретено новое промышленное оборудование, планомерно проходит организация и оснащение учебных лабораторий в университетах-партнерах. О задачах и перспективах оптико-механического конструкторского бюро
«АСТРОН», о технологиях и оборудовании «АСТРОН» – наш разговор с главным конструктором компании Вадимом Валерьевичем Старцевым.
Technologies and Technology Equipment
Tехнологии и технологическое оборудование
D. S. Trubashevskiy
Eppur si muove or Forget Everything You Knew About Classic 3D Printing
DOI: 10.22184/1993-7296.FRos.2022.16.5.358.368

The main goal of additive manufacturing (AM) is to significantly increase the full-scale production capacity. The dynamic development of additive technologies (AT) is related to the prospects for its automation when integrating into the machine designs of the modular layout arrangements. The layouts are considered where the workbench is an important element for production automation and performance improvement of the entire process system. The usage of a round table with polar coordinates can affect the AM capacity. Various ATs are considered, including MJM, STEP, MoldJet, HSR, in order to demonstrate application of such workbenches.
Д. С. Трубашевский
Eppur si muove, или забудьте все, что вы знали о классической 3d-печати
DOI: 10.22184/1993-7296.FRos.2022.16.5.358.368

Главная цель аддитивного производства (АП) – ​это значительное повышение производительности серийного производства. Динамичное развитие аддитивных технологий (АТ) связано с перспективами их автоматизации при внедрении в конструкции станков модульных компоновочных решений. Рассмотрены схемы, в которых рабочий стол представляет собой важный элемент для автоматизации производства и увеличения производительности всего технологического комплекса. Использование круглого стола с полярными координатами может повлиять на производительность АП. Рассмотрены разные АТ, в том числе MJM, STEP, MoldJet, HSR, для демонстрации использования таких столов.
Теги:   3d printers   3d printing   3d printing of electronic components   3d-печать   3d-печать электронных компонентов   3d-принтеры   additive manufacturing   additive technologies   automation   cartesian reference system   full-scale production   multi-­materiality   piezoelectric heads   polar coordinate system   robotic process automation   rotational 3d printing   wearable electronics   автоматизация   аддитивное производство   аддитивные технологии   декартовая система координат   мультиматериальность   носимая электроника   полярная система координат   пьезоэлектрические головки   роботизация   ротационная 3d-печать   серийное производство
Optical Devices & Systems
Оптические устройства и системы
A. P. Semenov, M. A. Abdulkadyrov, V. E. Patrikeev, A. B. Morozov, R. K. Nasyrov
Testing Methods for the Shape of Axial and Extra-­Axial Aspherical Surfaces with a Computer-­Generated Holograms, Decentering Determination and Distortion Consideration During Its Formation. Part II
DOI: 10.22184/1993-7296.FRos.2022.16.5.392.402

Diffractive optical elements (DOE) or computer-­generated holograms (CGH) have become an integral part of the up-to-date testing of aspherical surfaces of the large-­sized optical mirrors and optical systems. The features of the control of off-axis aspherical surfaces with CGH and the control and shaping of an off-axis aspherical mirror are considered in this article (see PHOTONICS RUSSIA, 2022, Vol. 16, № 4, Part I).
А. П. Семенов, М. А. Абдулкадыров, В. Е. Патрикеев, А. Б. Морозов, Р. К. Насыров
Методы контроля формы осевых и внеосевых асферических поверхностей с дифракционным оптическим элементом, определением децентрировки и учетом дисторсии при их формообразовании. Часть 2
DOI: 10.22184/1993-7296.FRos.2022.16.5.392.402

Дифракционные оптические элементы (ДОЭ) или Computer Generated Holograms (CGH) стали неотъемлемой частью современного контроля асферических поверхностей крупногабаритных оптических зеркал и оптических систем. В продолжение статьи (см. ФОТОНИКА, 2022, том 16, № 4) рассмотрены особенности контроля внеосевых асферических поверхностей с ДОЭ и контроль, а также формообразование внеосевого асферического зеркала.
A. A. Lobanov, G. A. Mozharov, A. S. Filonov
Optical Finder for a Space Probe Autonomous Landing on Small Bodies of the Solar System
DOI: 10.22184/1993-7296.FRos.2022.16.5.404.414

The original design of the multichannel optical finder with polar correlation is proposed. The finder considers as a part of the aboard multifunctional system of the space probe. The direction finder is able to significantly improve the accuracy of guidance when landing on small bodies of the solar system, carried out in an autonomous mode. The direction finder model is created in thin components based on mathematical modeling and the laws of geometric optics.
А. А. Лобанов, Г. А. Можаров, А. С. Филонов
Оптический пеленгатор для автономной посадки космического зонда на малые тела Солнечной системы
DOI: 10.22184/1993-7296.FRos.2022.16.5.404.414

Предлагается оригинальная конструкция оптического четырехканального пеленгатора с полярной корреляцией. Пеленгатор, входящий в состав многофункционального бортового комплекса космического летательного аппарата, способен значительно повысить точность наведения при посадке на малые тела Солнечной системы, осуществляемую в автономном режиме. Модель пеленгатора создана в тонких компонентах на основе математического моделирования и законов геометрической оптики.
P. A. Khorin, S. N. Khonina
Aberration-­Matched Filter for the Topological Vortex Charge Analysis
DOI: 10.22184/1993-7296.FRos.2022.16.5.416.424

It is well-known that the astigmatic transformation is used to analyze the topological vortex charge. In this paper, a multi-­order filter matched to various aberrations described by the Zernike polynomials is used to implement the astigmatic transformations of vortex beams. Such a filter makes it possible to simultaneously introduce several wave aberrations with various types and levels into the analyzed vortex beam in order to implement various aberrational transformations, including astigmatism. In this case, a set of aberration-­transformed distributions of the analyzed vortex beam is formed in the focal plane in different diffracting orders that facilitates determination of its topological charge.
П. А. Хорин, С. Н. Хонина
Фильтр, согласованный с аберрациями, для анализа топологического заряда вихревого пучка
DOI: 10.22184/1993-7296.FRos.2022.16.5.416.424

Известно, что для анализа топологического заряда вихревого пучка используется астигматическое преобразование. В данной работе для осуществления астигматических преобразований вихревых пучков используется многоканальный фильтр, согласованный с различными аберрациями, описываемыми полиномами Цернике. Такой фильтр позволяет внести в анализируемый вихревой пучок сразу несколько волновых аберраций различного типа и уровня для осуществления различных аберрационных преобразований, включая астигматизм. При этом в фокальной плоскости в различных дифракционных порядках формируется набор аберрационно-­преобразованных распределений анализируемого вихревого пучка, что облегчает определение его топологического заряда.
Microwave Photonics
Радиофотоника
B. A. Borisov, S. I. Donchenko, A. S. Zhabin, V. V. Murashkin, N. N. Parkhomenko, Yu. A. Roy, [M. A. Sadovnikov], A. L. Sokolov, E. V. Titov, V. D. Shargorodsky
Development of “Tochka” Radio-Laser of Space Geodesy and Navigation Issues
DOI: 10.22184/1993-7296.FRos.2022.16.5.370.391

The laser ranging measurement systems that are included in the coordinate-time data determination system, are designed to solve many application and fundamental problems. To achieve the high accuracy specifications of the GLONASS global navigation satellite system, new generation radio-­laser stations “Tochka” and their modifications have been developed. This article describes the methods for achieving submillimeter accuracy of laser range measurements to the satellite vehicles with the laser retroreflectors and for ensuring subnanosecond verification accuracy of onboard time scales with the ground-­based standards and remote time center scales.
Б. А. Борисов, С. И. Донченко, А. С. Жабин, В. В. Мурашкин,Н. Н. Пархоменко, Ю. А. Рой, [М. А. Садовников], А. Л. Соколов, Е. В. Титов, В. Д. Шаргородский
О создании радиолазерных комплексов «Точка» для решения
DOI: 10.22184/1993-7296.FRos.2022.16.5.370.391

Измерительные системы лазерной дальнометрии, входящие в систему определения координатно-­временных данных, предназначены для решения множества прикладных и фундаментальных задач. Для достижения высоких точностных характеристик глобальной навигационной спутниковой системы ГЛОНАСС разработаны радио-­лазерные станции нового поколения «Точка» и их модификации. В статье описаны методы достижения субмиллиметровой точности лазерных измерений дальности до КА с лазерными ретрорефлекторами и обеспечения субнаносекундной точности верификации бортовых шкал времени с наземными эталонами и шкалами удаленных центров времени.
Разработка: студия Green Art